Exercise 7.8.2

A particular solution to $y^{\prime}=y^{2} / x^{3}-y / x+2 x$ is $y=x^{2}$. Find a more general solution.

Solution

Since one solution is known, the Riccati equation can be transformed into a Bernoulli equation by making the substitution $y=x^{2}+u$. Differentiating both sides of the substitution with respect to x gives $y^{\prime}=2 x+u^{\prime}$.

$$
y^{\prime}=\frac{y^{2}}{x^{3}}-\frac{y}{x}+2 x \quad \rightarrow \quad 2 x+u^{\prime}=\frac{\left(x^{2}+u\right)^{2}}{x^{3}}-\frac{\left(x^{2}+u\right)}{x}+2 x x \quad \rightarrow \quad u^{\prime}=\frac{u^{2}}{x^{3}}+\frac{u}{x}
$$

Bring u / x to the left side.

$$
u^{\prime}-\frac{u}{x}=\frac{u^{2}}{x^{3}}
$$

Divide both sides by u^{2}.

$$
u^{-2} u^{\prime}-\frac{1}{x} u^{-1}=\frac{1}{x^{3}}
$$

Make the substitution $p=u^{-1}$. Then $p^{\prime}=-u^{-2} u^{\prime}$ by the chain rule.

$$
-p^{\prime}-\frac{1}{x} p=\frac{1}{x^{3}}
$$

Multiply both sides by -1 .

$$
p^{\prime}+\frac{1}{x} p=-\frac{1}{x^{3}}
$$

This is a first-order linear ODE that can be solved by multiplying both sides by an integrating factor I.

$$
I=\exp \left(\int^{x} \frac{1}{s} d s\right)=e^{\ln x}=x
$$

Proceed with the multiplication.

$$
x p^{\prime}+p=-\frac{1}{x^{2}}
$$

The left side can be written as $d / d x(I p)$ by the product rule.

$$
\frac{d}{d x}(x p)=-\frac{1}{x^{2}}
$$

Integrate both sides with respect to x.

$$
x p=\frac{1}{x}+C
$$

Divide both sides by x.

$$
p(x)=\frac{1}{x^{2}}+\frac{C}{x}
$$

Now that the ODE is solved, change back to u.

$$
u^{-1}=\frac{1}{x^{2}}+\frac{C}{x}
$$

Invert both sides.

$$
\begin{aligned}
u(x) & =\frac{1}{\frac{1}{x^{2}}+\frac{C}{x}} \cdot \frac{x^{2}}{x^{2}} \\
& =\frac{x^{2}}{1+C x}
\end{aligned}
$$

Therefore, since $y=x^{2}+u$,

$$
y(x)=x^{2}+\frac{x^{2}}{1+C x} .
$$

